Résolution aidée (sous tableur) d’une série d’exercices de répartition (difficulté graduée) :
Dans un collège de 500 élèves, 30 % sont en 6ème, un quart des élèves sont en 5ème, 22 % en 4ème.
Combien y - a -t-il d’élèves en 3ème ? Quel pourcentage cela représente-t-il ?
6ème
5ème
4ème
3ème
TOTAL
Effectif
Pourcentage
Public / Niveau
Classe de sixième (situation d’apprentissage ou situation de remédiation).
Notions réinvesties
Fraction de grandeur – appliquer un pourcentage à une grandeur.
Écritures différentes de certaines fractions (un quart = 25%).
Répartition d’une population suivant un critère donné : présentation sous forme de tableau, représentation en diagramme circulaire.
Ce qui a été fait avant
Les élèves ont été sensibilisés auparavant à de telles situations à travers l’activité décrite ci-dessous et développant des compétences transversales liées à la lecture d’énoncés et de consignes et les compétences mathématiques liées au calcul des fractions de grandeurs.
Après s’être connecté, chaque élève ouvre le fichier tableur qui se trouve dans le dossier de la classe. Le fichier étant en lecture seule, il devra dans un premier temps en faire un nouvel enregistrement (nominatif) qu’il rangera dans son dossier personnel : il pourra alors travailler et enregistrer au fur et à mesure son travail sur ce nouveau fichier.
L’élève doit compléter quatre feuilles de calcul dont la majorité des cellules sont protégées. Chaque feuille présente un énoncé (situation de répartition d’une population suivant un critère donné), le tableau de répartition (effectifs et pourcentages), le diagramme circulaire. Les élèves n’ont accès qu’aux cases des effectifs partiels ainsi qu’à certaines cases de légendes, les autres données se complétant automatiquement (cases protégées). Une case « calculatrice » est accessible pour permettre à l’élève d’appréhender une des fonctionnalités des tableurs.
La première feuille, protégée entièrement, est un exercice entièrement résolu présentant les différents éléments que l’élève doit vérifier pour s’assurer de la bonne résolution de l’exercice et rappelant les procédures de calculs.
Pour l’exercice de la deuxième feuille, tous les effectifs partiels sont donnés et la recherche porte sur l’effectif total.
Pour l’exercice de la troisième feuille, l’effectif total est donné ainsi que certains effectifs partiels (en toutes lettres) ; la recherche porte sur l’effectif partiel manquant.
Pour les deux derniers exercices, l’élève dispose dans l’énoncé de l’effectif total mais ne dispose que de certains pourcentages. Pour compléter le tableau de manière convenable, l’élève pourra utiliser a priori deux procédures :
Par essai / erreur : l’élève essaie des nombres au hasard dans les cases disponibles jusqu’à l’obtention des bonnes réponses.
En faisant appel au sens des opérations : pour obtenir l’effectif partiel manquant, on soustrait la somme des effectifs partiels disponibles à l’effectif total ou pour obtenir un effectif partiel, on multiplie l’effectif total par le pourcentage correspondant.
Évaluation
Pour évaluer le travail mathématique de chaque élève, l’enseignant pourra :
soit aller voir le travail sauvegardé de chaque élève,
soit relever le travail s’il a demandé aux élèves de reporter au fur et à mesure leurs résultats sur un support papier.
Pour chaque donnée écrite par l’élève, la répercussion sur les nombreuses autres données est immédiate. Pour l’élève procédant par essai–erreur, cela lui permet de se rendre compte que cette procédure est infructueuse et sollicitera une procédure “experte” parfois disponible comme la recherche de l’effectif partiel manquant par une soustraction ou en cours d’acquisition comme la recherche de l’effectif partiel à l’aide du pourcentage.
La présence simultanée du tableau de répartition et du diagramme circulaire favorise la prise de sens de ces deux registres l’un par rapport à l’autre.
Le calcul instantané de certaines données attise la curiosité de l’élève et l’amène à poser des questions sur le fonctionnement du tableur et sollicite l’envie de réaliser de tels tableaux.
Prolongement possible
À partir d’une situation statistique élémentaire liée par exemple à la classe (réalisation d’une enquête), faire présenter sur un tableur - grapheur des tableaux d’effectifs et les diagrammes circulaires correspondants (éventuellement avec l’aide d’un enseignant de technologie) .
Personnes à contacter pour cette activité :Marcel COMBÈS