# Trinôme du second degré

Lancer le tableur Excel.

Par un click droit, renommer la feuille 1 : « Calculs » et la feuille 2 : « Courbe »

# **FEUILLE 1 : CALCULS**

# Les titres :

En cellule D1: Trinôme du second degré

En cellule  $G1 : P(x)=ax^2+bx+c$ 

En cellule A4 : a En cellule B4 : b En cellule C4 : c

En cellule D4: Discriminant En cellule E4: Racine x' En cellule F4: Racine x'' En cellule G4: Somme En cellule H4: Produit

Réduire la taille des colonnes A, B, C et ajuster celle des autres.

# Les valeurs et les calculs :

Entrer trois valeurs numériques pour les coefficients a, b, c en A5, B5, C5.

En D5 : =SI(A5=0;" ";B5^2-4\*A5\*C5)

 $\rightarrow$  ( si a=0 on affiche un blanc, sinon on affiche  $\Delta = b^2 - 4ac$  )

En E5 : =SI(A5=0;"";SI(D5<0;"";(-B5-RACINE(D5))/(2\*A5)))

→ (si a=0 ou si  $\Delta$  < 0 on affiche un blanc, sinon on affiche  $\frac{-b-\sqrt{\Delta}}{2a}$ )

→ (si a=0 ou si  $\Delta < 0$  on affiche un blanc, sinon on affiche  $\frac{-b + \sqrt{\Delta}}{2a}$ )

En G5 : =SI(A5=0;" ";SI(D5<0;" ";E5+F5))

 $\rightarrow$  (si a=0 ou si  $\Delta$  < 0 on affiche un blanc, sinon on affiche S = x' + x'')

En H5 : =SI(A5=0;"";SI(D5<0;"";E5×F5))

 $\rightarrow$  (si a=0 ou si  $\Delta$  < 0 on affiche un blanc, sinon on affiche  $P = x \times x''$ )

### La recopie:

Sélectionner la cellule D5 et tirer sur la poignée de recopie sur une trentaine de lignes Faire de même pour les cellules E5, F5, G5 et H5.

### **Enregistrer le document**

# **FEUILLE 2 : Courbe**

# **Les titres :**

En C1: Trinôme du second degré

En I1:  $P(x)=ax^2+bx+c$ 

En cellule D1: Trinôme du second degré

En cellule  $G1 : P(x)=ax^2+bx+c$ 

En cellule A3 : a En cellule B3 : b En cellule C3 : c

En cellule E3: Discriminant

En cellule G3 : x'
En cellule H3 : x''

### Les valeurs et les calculs :

Entrer trois valeurs numériques pour les coefficients a, b, c en A4, B4, C4.

En E4: =SI(A4=0; "";B4^2-4\*A4\*C4)

 $\rightarrow$  ( si a=0 on affiche un blanc, sinon on affiche  $\Delta = b^2 - 4ac$  )

En G4: =SI(A4=0; ""; SI(E4<0; ""; (-B4-RACINE(E4))/(2\*A4)))

→ (si a=0 ou si  $\Delta < 0$  on affiche un blanc, sinon on affiche  $\frac{-b - \sqrt{\Delta}}{2a}$ )

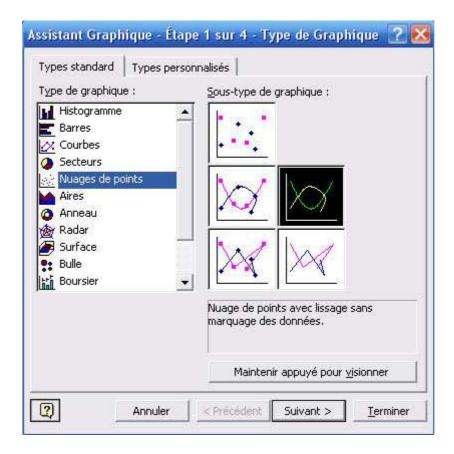
En H4: =SI(A4=0; ""; SI(E4<0; ""; (-B4+RACINE(E4))/(2\*A4)))

→ (si a=0 ou si  $\Delta$  < 0 on affiche un blanc, sinon on affiche  $\frac{-b+\sqrt{\Delta}}{2a}$ )

### Le tableau de valeurs

En ligne 6:

| x -3 -2,5 -2 -1,5 -1 -0,5 0 0,5 | 1 | 1 | 1,5 | 2 | 2,5 | 3 |
|---------------------------------|---|---|-----|---|-----|---|
|---------------------------------|---|---|-----|---|-----|---|


En A7 : P(x)

En B7 : = \$A\$4\*B6\*B6+\$B\$4\*B6+\$C\$4 puis tirer sur la poignée de recopie jusqu'en N7.

### La courbe :

Sélectionner les cellules de A6 à N7

Lancer l'assistant graphique et sélectionner «nuages de points »



Cliquer sur Suivant deux fois puis terminer. Enregistrer le document.

### **Utilisation des feuilles de Calculs :**

#### Pour la feuille 1:

Remplir avec des valeurs numériques les cellules correspondant à a, b, c en prenant soin de varier les signes des coefficients a, b, c, de façon à obtenir les trois cas  $\Delta > 0$ ,  $\Delta = 0$ ,  $\Delta < 0$ .

- 1. Dans le cas où  $\Delta > 0$ , essayer de trouver une relation entre la somme des racines et les coefficients a, b, c, puis entre le produit des racines et les coefficients a, b, c.
  - Etablir une conjecture. Démonstration!
- 2. Peut-on avoir a et b de même signe et deux racines distinctes ?
- 3. Peut-on avoir a et c de signe contraire et aucune racine ?

### Pour la feuille 2:

Affecter des valeurs numériques aux coefficients a, b, c , et visualiser l'effet sur la forme et le sens de la parabole. Faire plusieurs essais de façon à visualiser les différents cas suivant le signe du discriminant.

Etablir la relation entre le signe du discriminant et les points d'intersection de la parabole avec l'axe des x.

Explications?