Fiche professeur

La première partie est consacrée à l'étude du comportement à l'infini d'une suite (u_n) , d'abord à l'aide d'une calculatrice puis à l'aide d'un tableur sur ordinateur. La seconde partie est consacrée à un travail analogue sur une suite auxiliaire (v_n) .

Partie A

1/

2/ A l'aide d'une calculatrice :

- a) Utilisation du tableur de la calculatrice ou du mode « suite », $\lim u_n = \frac{1}{2}$.
- b) Calcul « ponctuel » de valeurs de rang 10^p

3/ A l'aide d'un tableur :

Construction de cellules avec formules, graphique associé.

Problème pour l'autre ou alors sélection de seulement u_n .

Courbe u_n avec $\log n$?

4/ résultats « différents » à partir de certaines valeurs, décalage entre la calculatrice et le tableur, approximation qui donne 0,5 puis n négligé devant n^2 par les outils qui entraîne 0 5/ possibilité de procéder par « quantité conjuguée » , voire montrer que pour tout $n \ge 1$,

$$u_n = \frac{1}{\sqrt{1 + \frac{1}{n} + 1}}$$

Partie B

Soit la suite (v_n) définie pour $n \ge 1$ par $v_n = \ln n + \ln \left(\sqrt{1 + \frac{1}{n}} - 1 \right)$.

1/

2/ Propriété de la fonction ln : $v_n = \ln u_n$, explication avec les dernières lignes (« NUM ») pourquoi ce résultat ?

 $3/\lim v_n = -\ln 2$