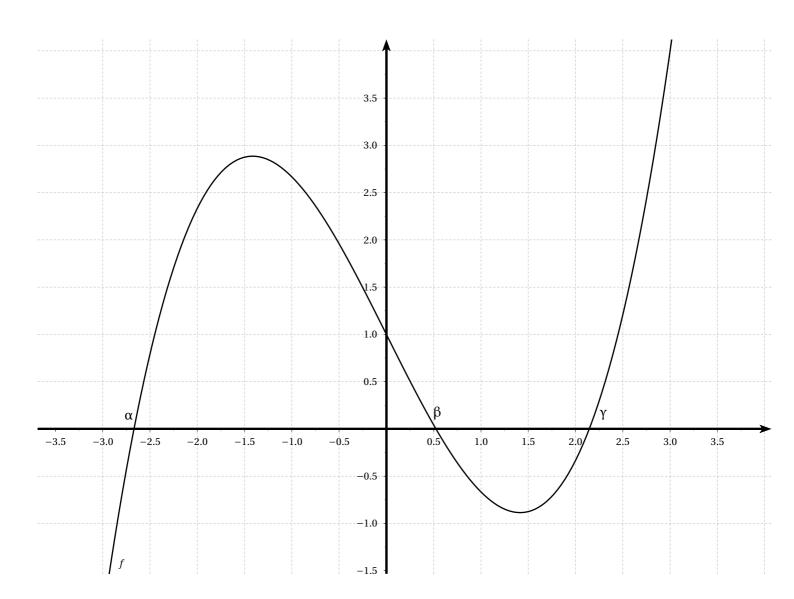
On considère la fonction f définie sur \mathbb{R} par : $f(x) = \frac{x^3}{3} - 2x + 1$ et sa courbe représentative dans le repère suivant :



On appelle α , β et γ les trois solutions de l'équation f(x) = 0.

Dans la suite, on s'intéresse tout d'abord à la recherche de valeurs approchées de γ.

On pose $a_0 = 3$

- 1. (a) Sans faire aucun calcul, tracer la tangente T_{a_0} . Elle coupe l'axe des abscisses en un point dont l'abscisse est notée a_1 .
 - (b) Toujours sans aucun calcul tracer la tangente T_{a_1} . Elle coupe l'axe des abscisses en un point dont l'abscisse est notée a_2 . Faire bien apparaître a_0 , a_1 et a_2 sur l'axe des abscisses. Que remarquez-vous?
- 2. En suivant le principe décrit à la question 1, on définit de proche en proche les nombres a_2 , a_3 , etc... c'est-à-dire une suite (a_n) .
 - (a) Déterminer l'équation réduite de T_{a_0} (Attention, il ne faut pas remplacer a_0 par sa valeur : 3).
 - (b) En utilisant le fait que la tangente T_{a_0} coupe l'axe des abscisses en a_1 , justifier la relation suivante entre a_1 et a_0 :

$$a_1 = a_0 - \frac{f(a_0)}{f'(a_0)}$$

- (c) Préciser, de manière analogue, une relation entre a_{n+1} et a_n pour tout entier n.
- 3. On considère l'algorithme suivant écrit en langage python :

```
from decimal import Decimal, getcontext getcontext().prec = 81

def f(x): \\
return <math>x^{**}3/3 - 2 * x + 1

def deriveef(x): \\
return <math>x^{**}2 - 2

a=3 \\
for i in range(9): \\
a = a - f(a)/deriveef(a) \\
print(a)
```

- (a) Exécuter cet algorithme dans EduPython.
- (b) Que représentent les nombres affichées?
- (c) Observer attentivement les décimales de ces nombres? Quels phénomènes observe-t-on?

 Remarque: au-delà la stabilisation des decimales que les élèves remarqueront, il faut leur faire voir que le nombre de décimales stabilisées double à chaque fois : c'est l'intérêt fondamental de la méthode de Newton.
- (d) Faire une conjecture sur les 80 premières décimales exactes de γ .
- 4. Adapter l'algorithme précédent afin d'obtenir les 80 premières décimales exactes de α et β .