

Olympiades nationales de mathématiques

Académies d'Amiens et de Lille

Mercredi 13 mars 2019 de 8h à 12h10

Pause de 10h à 10h10

Séries autres que la série S

Énoncés de la première partie de 8h à 10h

L'épreuve se déroule en deux parties indépendantes et indissociables de deux heures chacune. Les énoncés des deux parties sont donc séparés et distribués séparément à des moments différents. Les copies rédigées sont ramassées à l'issue de la première partie (« deux exercices nationaux »). Une pause de dix minutes est prévue, avant la seconde partie (« deux exercices académiques »). Les candidats ne sont pas autorisés à quitter les locaux avant.

Les calculatrices sont autorisées selon la législation en vigueur.

Il est conseillé aux candidats qui ne pourraient formuler une réponse complète à une question d'exposer le bilan des initiatives qu'ils ont pu prendre.

Les énoncés doivent être rendus au moment de quitter définitivement la salle de composition.

Exercice national numéro 1

Triangles à côtés entiers

On dit qu'un triangle est un triangle entier si les longueurs de ses 3 côtés sont des entiers naturels non nuls. On rappelle la propriété dite de l'« inégalité triangulaire », caractéristique de tout triangle non aplati : la longueur de chacun des côtés est strictement inférieure à la somme des longueurs des deux autres.

1. α . Parmi les triplets (x, y, z) suivants, indiquer lequel représente les longueurs des côtés d'un triangle entier non aplati, puis comment tracer ce triangle et avec quels outils :

$$(4, 4, 5)$$
 ; $(3, 6, 9)$; $(2, 2, 6)$

- **b.** Quelles sont les valeurs possibles de l'entier z si (15, 19, z) désigne les longueurs des trois côtés d'un triangle entier non aplati rangées par ordre croissant (soit : $z \ge 19$) ?
- c. Étant donné trois entiers naturels non nuls x, y et z tels que $x \le y \le z$, pourquoi suffit-il d'ajouter une seule condition (à préciser) pour que le triplet (x, y, z) désigne les longueurs des côtés d'un triangle entier non aplati ?
- **2.** Soit p un entier naturel non nul. On note E_p l'ensemble des triplets d'entiers naturels rangés par ordre croissant $x \le y \le z$ et désignant les côtés d'un triangle entier non aplati dont le périmètre est égal à p. Ainsi obtiendrait-on $E_9 = \{(1,4,4),(2,3,4),(3,3,3)\}$.
- **a.** Si le triplet (x, y, z) appartient à E_{18} , quelles sont les valeurs maximale et minimale pour z?
- **b.** Donner la composition de E_{18} et représenter dans un repère orthonormé l'ensemble des points de coordonnées (x,y) pour lesquels il existe un entier naturel z tel que $(x,y,z) \in E_{18}$. Vérifier que ces points se situent à l'intérieur ou sur les bords d'un triangle dont les sommets ont des coordonnées entières.
- **3.** a. Justifier que si $(x, y, z) \in E_p$ alors $(x + 1, y + 1, z + 1) \in E_{p+3}$.
- **b.** Soit $(x, y, z) \in E_{p+3}$. Déterminer une condition sur x, y et z pour que $(x-1, y-1, z-1) \in E_p$.
- **c.** En déduire que si p est impair alors E_p et E_{p+3} ont le même nombre d'éléments.
- 4. Étude de $E_{2\ 019}$.
- **a.** $E_{2.019}$ contient-il un triplet (x, y, z) correspondant à un triangle équilatéral?
- **b.** $E_{2\ 019}$ contient-il des triplets (x,y,z) correspondant à des triangles isocèles non équilatéraux ? Si oui combien ?
- **c.** Montrer que si $E_{2\ 019}$ contient un triplet (x,y,z) correspondant à un triangle rectangle alors $2\ 019^2 = 4\ 038(x+y) 2xy$.

En déduire que $E_{2\ 019}$ ne contient pas de triangle rectangle.

- **5.** Dans cette question on se propose de dénombrer $E_{2\ 019}$.
- **a.** Soit $(x, y, z) \in E_{2 \ 022}$. On rappelle que $x \le y \le z$. Établir que $x + y \ge 1 \ 012$ et $x + 2y \le 2 \ 022$.
- **b.** Réciproquement, montrer que si $x \le y$, $x + y \ge 1012$ et $x + 2y \le 2022$ alors

$$(x, y, 2022 - x - y) \in E_{2022}$$
.

- c. Pourquoi, dans un repère orthonormé, l'ensemble des points à coordonnées entières positives (x,y) telles que $x \le y$, $x+y \ge 1\,012$ et $x+2y \le 2\,022$ constitue-t-il l'ensemble des points à coordonnées entières d'un triangle qui est rectangle ? En déterminer l'aire $\mathcal A$ ainsi que le nombre de points à coordonnées entières situés sur ses côtés.
- **d.** On admet le théorème de Pick : « Si un polygone P est tel que tous ses sommets sont à coordonnées entières dans un repère orthonormé alors son aire \mathcal{A} est donnée par la formule $\mathcal{A}=i+\frac{j}{2}-1$ où i désigne le nombre de points à coordonnées entières situés à l'intérieur de P et j le nombre de ceux situés sur les côtés de P. » En déduire le nombre de triplets de $E_{2 \ 022}$ puis celui de $E_{2 \ 019}$.

6. Une solution algorithmique.

De manière générale, concevoir un programme (à retranscrire sur la copie) permettant d'énumérer et de dénombrer E_p . Le tester sur E_{18} et sur $E_{2\ 019}$.

Exercice national numéro 2

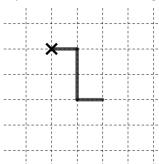
AGADADAGA

Dans cet exercice, on appellera *mot* toute suite de lettres formée des lettres A, D et G. Par exemple : ADD, A, AAADG sont des *mots*.

Astrid possède un logiciel qui fonctionne de la manière suivante : un utilisateur entre un *mot* et, après un clic sur EXÉCUTER, chaque lettre A du *mot* (s'il y en a) est remplacée par le *mot* AGADADAGA. Ceci donne un nouveau *mot*.

Par exemple, si l'utilisateur rentre le *mot* AGA, on obtient le *mot* AGADADAGAGADADAGA. Un deuxième clic sur EXÉCUTER réitère la transformation décrite ci-dessus au nouveau *mot*, et ainsi de suite.

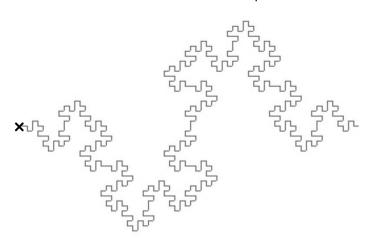
1. Quels sont les mots qui restent inchangés quand on clique sur EXÉCUTER?

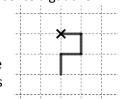

Traitement de texte

Astrid rentre le mot A.

- 2. Quel mot obtient-elle après avoir cliqué deux fois sur EXÉCUTER?
- 3. Combien de clics au minimum faut-il pour obtenir un mot contenant un milliard de A?
- 4. Après 20 clics, combien le mot obtenu contient-il de lettres D?

Motif


Astrid souhaite maintenant dessiner un motif sur une feuille de papier quadrillé, en utilisant le dernier mot obtenu par le logiciel. Pour cela, elle lit de gauche à droite chaque lettre de ce mot et trace une ligne brisée sans lever le stylo en suivant les consignes suivantes :


- Le point de départ de la ligne est une croix située sur un nœud du quadrillage ;
- si la lettre lue est A, elle trace horizontalement et de gauche à droite un segment de longueur un carreau ;
- si la lettre lue est G, elle tourne la feuille d'un quart de tour dans le sens des aiguilles d'une montre ;
- si la lettre lue est D, elle tourne la feuille d'un quart de tour dans le sens inverse des aiguilles d'une montre ;
- quand toutes les lettres sont lues, elle remet la feuille dans la position initiale pour regarder le motif obtenu.

Par exemple, le motif obtenu à partir du mot ADAAGA est représenté à gauche.

- 5. Astrid a réalisé le motif de droite. Quel mot avait-elle obtenu ?
- **6.** Astrid entre le *mot* A et clique deux fois sur EXÉCUTER. Dessiner le motif obtenu.
- **7.** Astrid reprogramme le logiciel et remplace le mot AGADADAGA par un autre mot dont elle ne se souvient plus. Elle rentre le mot A et obtient le motif ci-dessous après avoir cliqué trois fois sur EXÉCUTER. Quel est le mot oublié par Astrid ?

- **8.** On s'intéresse dans cette question uniquement aux motifs obtenus à partir de *mots* qui commencent par la lettre A, et se poursuivent en juxtaposant des séquences GA ou DA. On appelle *largeur* du motif le nombre de carreaux compris entre les points les plus à gauche et à droite du motif obtenu. Par exemple, la largeur du motif obtenu à partir du *mot* ADAGAGA est 2.
- **a.** Quelle est la largeur du motif obtenu à partir du mot AGAGADA?
- **b.** Un *mot* conforme à l'hypothèse du **8.** comporte dix lettres D et dix lettres G. Déterminer toutes les largeurs possibles du motif obtenu.

